On denominator conjecture of cluster algebras

Changjian FU

(Sichuan University)

International Conference on Triangulated Categories and Related Topics

August 11-15, 2024

< ロ > < 同 > < 三 > < 三 >

Outline

Notations

- for an integer a, we write $[a]_+ = \max(a, 0)$;
- *n*: a positive integer;
- *F*: the field of rational functions in *n* indeterminates with coefficients in Q;
- \mathbb{T}_n : the *n*-regular tree whose edges are labeled by the numbers $1, \ldots, n$ such that the *n* edges emanating from each vertex has different labels.

3-regular tree

Labeled Seed

Definition 1.1

A labeled seed is a pair (\mathbf{x}, B) ,

- x = (x₁,..., x_n) is an *n*-tuple of elements of F forming a free generating set of F;
- B = (b_{ij}) ∈ M_n(ℤ) which is skew-symmetrizable, *i.e.*, there exists a positive integer diagonal matrix S such that SB is skew-symmetric. In this case, S is a skew-symmetrizer of B.

We refer to \mathbf{x} , x_i , B as the cluster, cluster variables and the exchange matrix, respectively.

Seed Mutation

Definition 1.2 (Fomin–Zelevinsky 2002)

Let (\mathbf{x}, B) be a labeled seed and $k \in \{1, ..., n\}$. The seed mutation μ_k in direction k transforms (\mathbf{x}, B) into $\mu_k(\mathbf{x}, B) := (\mathbf{x}', B')$, where

• the entries of $B' = (b'_{ij})$ are given by

$$b_{ij}' = egin{cases} -b_{ij} & ext{if } i=k ext{ or } j=k \ b_{ij}+[b_{ik}]_+b_{kj}+b_{ik}[-b_{kj}]_+ & ext{otherwise.} \end{cases}$$

 \bullet the cluster variables $\textbf{x}'=(\textbf{x}'_1,\ldots,\textbf{x}'_n)$ are given by

$$x'_{j} = \begin{cases} \frac{\prod_{i=1}^{n} x_{i}^{[b_{ik}]_{+}} + \prod_{i=1}^{n} x_{i}^{[-b_{ik}]_{+}}}{x_{k}} & \text{if } j = k;\\ x_{j} & \text{otherwise} \end{cases}$$

< ロ > < 同 > < 三 > < 三 >

Cluster Pattern

Definition 1.3

Let (\mathbf{x}, B) be a labeled seed. A cluster pattern $t \mapsto \Sigma_t$ of (\mathbf{x}, B) is an assignment of a labeled seed $\Sigma_t = (\mathbf{x}_t, B_t)$ to each vertex t of \mathbb{T}_n such that

- there exists a vertex $t_0 \in \mathbb{T}_n$ such that $\Sigma_{t_0} = (\mathbf{x}, B)$. The vertex t_0 is called a root vertex.
- for an edge $t \xrightarrow{k} t'$ labeled by k of \mathbb{T}_n , we have $\Sigma_{t'} = \mu_k(\Sigma_t)$.

We denote by $\mathbf{x}_t = (x_{1;t}, \dots, x_{n;t})$ and $B_t = (b_{ij;t})$.

Cluster Algebra

Definition 1.4 (Fomin–Zelevinsky 2002)

The cluster algebra $\mathcal{A}(B) := \mathcal{A}(\mathbf{x}, B)$ associated with the cluster pattern $t \mapsto \Sigma_t$ is the \mathbb{Z} -subalgebra of \mathcal{F} generated by

$$\mathcal{X} = \{x_{i;t}\}_{1 \le i \le n, t \in \mathbb{T}_n}.$$

Laurent Phenomenon

Theorem 1 (Fomin–Zelevinsky 2002)

Let (\mathbf{x}, B) be a labeled seed and $t \mapsto \Sigma_t$ a cluster pattern of (\mathbf{x}, B) . For any vertices $t, s \in \mathbb{T}_n$ and $1 \le j \le n$,

$$x_{j;t} \in \mathbb{Z}[x_{1;s}^{\pm},\ldots,x_{n;s}^{\pm}].$$

Classification Theorem

Definition 1.5

- A cluster algebra is of finite type if there are finitely many cluster variables.
- Let B = (b_{ij}) ∈ M_n(Z) be a skew-symmetrizable matrix. The Cartan counterpart of B is a matrix A(B) = (a_{ij}) ∈ M_n(Z) such that a_{ii} = 2, a_{ij} = -|b_{ij}| for i ≠ j.

Theorem 2 (Fomin–Zelevinsky 2003)

Let $\mathcal{A}(B)$ be a cluster algebra with a fixed cluster pattern $t \mapsto \Sigma_t$. The cluster algebra $\mathcal{A}(B)$ is of finite type iff $\exists t \in \mathbb{T}_n$ such that the Cartan counterpart of B_t is of finite type generalized Cartan matrix.

 \rightsquigarrow We can say a cluster algebra of type $\mathbb{A},\mathbb{B},\ldots.$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Example 1.1 (Type \mathbb{A}_2)

Let

$$(\mathbf{x} = (x_1, x_2), B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix})$$

be a labeled seed. We fix a cluster pattern by assigning (\mathbf{x}, B) to the root vertex t_0 :

$$\cdots \underline{-1} t_0 \underline{-2} t_1 \underline{-1} t_2 \underline{-2} \cdots$$

One can compute that

$$\mathcal{A}(B) = \mathbb{Z}[x_1, x_2, \frac{x_1+1}{x_2}, \frac{1+x_1+x_2}{x_1x_2}, \frac{1+x_2}{x_1}].$$

< ロ > < 同 > < 三 > < 三 >

Cluster Monomial

Let (\mathbf{x}, B) be a labeled seed and $t \mapsto \Sigma_t$ a cluster pattern. Fix a vertex s and denote by $\mathbf{x}_s = (x_1, \dots, x_n)$.

 For each t ∈ T_n, monomials in the cluster x_t are cluster monomials.

e.g.
$$x_{1;t}^{k_1} x_{2;t}^{k_2} \cdots x_{n;t}^{k_n}$$
, where $k_i \ge 0$.

< 同 > < 三 > < 三 >

Denominator Vector

• For each cluster monomial *m*, by the Laurent phenomenon, we may rewrite *m* uniquely as

$$m=\frac{f(x_1,\cdots,x_n)}{x_1^{d_1}x_2^{d_2}\cdots x_n^{d_n}}$$

where $d_1, \ldots, d_n \in \mathbb{Z}$ and $f(x_1, \cdots, x_n) \in \mathbb{Z}[x_1, \cdots, x_n]$ such that $\forall x_i \nmid f(x_1, \cdots, x_n)$.

Definition 2.1

The vector den^s $(m) = (d_1, \ldots, d_n) \in \mathbb{Z}^n$ is called the denominator vector of m (with respect to the cluster \mathbf{x}_s).

- 4 目 ト 4 日 ト

Example 2.1 (type \mathbb{A}_2)

$$den^{t_0}(x_1) = (-1, 0), den^{t_0}(x_2) = (0, -1),$$

$$den^{t_0}(\frac{x_1 + 1}{x_2}) = (0, 1), den^{t_0}(\frac{x_2 + 1}{x_1}) = (1, 0),$$

$$den^{t_0}(\frac{x_2 + x_1 + 1}{x_1 x_2}) = (1, 1).$$

Note that $\mathbf{x}_{t_1} = (x_1, \frac{x_1+1}{x_2})$. Hence

$$den^{t_1}(\frac{x_1+1}{x_2}) = (0,-1).$$

$$x_2 = rac{x_1 + 1}{rac{x_1 + 1}{x_2}} \Rightarrow \mathsf{den}^{t_1}(x_2) = (0, 1)$$

э

イロト イポト イヨト イヨト

Remark

- Denominator vectors played a key role in the Classification Theorem of cluster algebras of finite type [Fomin–Zelevinsky 2003];
- It has good combinatorial properties studied by [Fomin–Zelevinsky 2003/2007], [Ceballos–Pilaud 2015], [Cao–Li 2020],... via combinatorics.

Denominator Conjecture

den : {Cluster Monomials} \longrightarrow {Denominator Vectors} $\subseteq \mathbb{Z}^n$

$$\mathbf{m} \mapsto \operatorname{den}^{t_0}(\mathbf{m})$$

Conjecture (Fomin–Zelevinsky 2004)

Denominator vectors parametrize cluster monomials, that is, different cluster monomials have different denominator vectors with respect to a given initial cluster.

- 4 同 ト 4 三 ト - - 三 ト - -

Known Cases:

- Cluster algebras of rank 2 (*i.e.* n = 2) [Sherman–Zelevinsky 2004];
- Cluster algebras of finite type with bipartite initial seeds[Fomin–Zelevinsky 07];
- Acyclic cluster algebras¹ with respect to an acyclic cluster [Caldero-Keller 2006/2008, Rupel-Stella 2020].
- Cluster algebras of rank 3 [Lee-Li-Schiffler 2020].
- Cluster algebras associated with marked surface with particular choice of initial seeds [Fu–Geng, arXiv:2407.11826]

¹A skew-symmetrizable integer matrix *B* is acyclic if there does not exist a sequence of indices i_1, \ldots, i_k such that $b_{i_1i_2} > 0, \ldots, b_{i_k-1}i_k > 0, b_{i_ki_1} > 0$. A cluster algebra $\mathcal{A}(B)$ is acyclic if there is a vertex $t \in \mathbb{T}_n$ such that B_t is acyclic. In this case, the cluster \mathbf{x}_t is also called acyclic.

A Weak Form

The Weak Form:

Different cluster variables have different denominator vectors with respect to a given cluster.

The Weak Form is established for:

- Cluster algebras of finite type [Geng-Peng 2012, Nakanishi-Stella 2014];
- Cluster algebras of skew-symmetric affine type [Fu–Geng 2019].

Remark

- It is not clear how to study this conjecture by combinatorical method in general situation;
- We do not have a "correct" categorification for denominator vectors except for certain special cases.

A Counterexample (by Jiarui FEI 2024)

Let Q be the following quiver:

Applying the following mutation sequence (2, 4, 1, 3, 4, 2, 3, 4), one obtains a cluster variable with *g*-vector (-3, 2, 0, -1). On the other hand, applying the mutation sequence (4, 2, 3, 1, 2, 4, 1, 2), one obtain a cluster variable with *g*-vector (0, -1, -3, 2). Both cluster variables have denoninator vector (4, 6, 4, 6).

• • = • • = •

Main Result

Theorem 3 (Fu–Geng working in progress)

Denominator conjecture is true for cluster algebras of finite type.

Туре А

Fomin–Shapiro–Thruston Correspondence:

Cluster Algebra type <i>A</i>		Disk with triangulation ${f T}$
initial cluster variables	\leftrightarrow	arcs in T
non initial cluster variables	\leftrightarrow	arcs not in T
cluster	\leftrightarrow	finite multisets of
monomials		compatible arcs
denominator	\leftrightarrow	intersection
vectors		vectors

イロト イボト イヨト イヨト

э

Type A

Lemma 3.1

Let (\mathbb{S}, \mathbb{M}) be a disk with n + 3 marked points and **T** a triangulation. Let \mathcal{M} and \mathcal{N} be finite multisets consisting of pairwise compatible arcs. If $Int_{T}(\mathcal{M}) = Int_{T}(\mathcal{N})$, then $\mathcal{M} = \mathcal{N}$.

- Each arc γ not in T is divided by T into irreducible arc segments γ⁽¹⁾,..., γ^(m) and each γ⁽ⁱ⁾ lies in a triangle Δ_i.
- The equivalence relation on arcs induces an equivalence relation on irreducible arc segments.
- Denote by arc \mathcal{M} the multiset of irreducible arc segments of arcs of \mathcal{M} .
- $\mathsf{Int}_{\mathsf{T}}(\mathcal{M}) = \mathsf{Int}_{\mathsf{T}}(\mathcal{N})$ implies $\mathsf{arc}\,\mathcal{M} = \mathsf{arc}\,\mathcal{N}$.

Sketch of Proof

- Assume the contrary, we may assume that $\mathcal{M} \cap \mathcal{N} = \emptyset$.
- ♦ There exists an arc $\alpha \in \mathcal{M}$ (with a fixed orientation) such that all other arcs of \mathcal{M} lie on the left hand side of α .
- By arc $\mathcal{M} = \operatorname{arc} \mathcal{N}$, we choose an arc $\beta \in \mathcal{N}$ such that β has maximal common consecutive irreducible arc segments as α .
- By discussion of β, we deduce that there is an arc γ ∈ M which lies on the right hand side of α, a contradiction.

・ 同 ト ・ 三 ト ・ 三 ト

Sketch of Proof

Remark 4

Lemma 3.1 has been proved in [Fu–Geng, arXiv:2212.11497] in the full generality of tilings, which extends a classical result of [Moshe 1983]: an arc is uniquely determined by its intersection vector for a marked surface with triangulation.

伺 ト イヨト イヨト

Type B and C

Type C cluster algebras admit geometric models by disk with one unmarked boundary component inside, which can be proved as type A.

Theorem 5 (Fu–Geng 2022, arXiv:2212.11497)

The denominator conjecture is true for a cluster algebra of type C_n if and only if it is true for a cluster algebra of type B_n .

- denominator vector of a non-initial cluster variable equals its f-vector[Gyoda 2021];
- the initial-finial duality of *F*-matrices [Fujiwara–Gyoda 2019];
- the *n* denominator vectors of a cluster of a type *C_n* cluster algebra are linear independent over $\mathbb{Q}[Fu-Geng-Liu \ 2021]$.

イロト イポト イヨト イヨト

Type D

- Geometric model of disk with a puncture;
- Fomin–Shapiro–Thurston's correspendence: denominator vector=intersection vector;
- A similar local-global criterion as tiling.

・ 同 ト ・ ヨ ト ・ ヨ ト

Exceptional types: An algorithm

Input: A skew-symmetrizable integer matrix B of finite type.

- Compute the set S of equivalence classes of matrices which can be obtained from B by mutations;
- For each C∈ S, compute its D-matrices associated to a cluster pattern of C, say, D = {D₁,..., D_m};
- Compute the determinant $|D_i|$ for each $D_i \in \mathcal{D}$. If $\exists i$, s.t. $|D_i| = 0$, then the DC is false; Otherwise,

・ 同 ト ・ 三 ト ・ 三 ト

伺 ト イ ヨ ト イ ヨ

A Consequence

- $\textcircled{O} \ \mathcal{C}: \text{ a cluster category of Dynkin type.}$
- ② *T*: a basic cluster-tilting object, i.e., $Ext^1_C(T, T) = 0$ and if $Ext^1_C(T, X) = 0$, then *X* ∈ add *T*.
- A := End(T): cluster-tilted algebra of Dynkin type.
- An A-module M is τ -rigid if $\text{Hom}_A(M, \tau M) = 0$, where τ is the Auslander-Reiten translation.

Corollary 3.2

Let A be a cluster-tilted algebra of Dynkin type, then different τ -rigid A-module have different dimension vector.

< ロ > < 同 > < 三 > < 三 >

Thanks for your attention!

伺 ト イ ヨ ト イ ヨ